Sample Mathematics Assessment for the Online AI executive Certificate

1. What is an example of two sets A, B that satisfv
$|A \cap B|=|A-B|=|B-A|=1$?
$|A|$ is the cardinality of A .
I. $A=\{\emptyset,\{\{\emptyset\}, 2\}\}, B=\{\{\varnothing\}, 2\}$
II. $A=\{\varnothing,\{\varnothing\}, 2\}, B=\{\varnothing, 2\}$
III. $A=\{\{\varnothing\},\{\varnothing, 2\}\}, B=\{\varnothing, 2\}$
IV. $A=\{\varnothing,\{\emptyset, 2\}\}, B=\{\{\varnothing, 2\}\}$
V. $A=\{\varnothing,\{\varnothing, 2\}\}, B=\{\{\varnothing\},\{\varnothing, 2\}\}$
2. Let $x_{0}=1, x_{k}={ }_{3}^{1} x_{k-1}$. Calculate $\sum_{k \geq 0} x_{k}$
I. $\frac{1}{2}$
II. $\quad \begin{array}{r}3 \\ 2\end{array}$
III. $\frac{5}{3}$
IV. 2
V. ∞
3. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ that has the following graph.

a) Find the critical points of f.
b) Find the intervals where the second derivative, $f^{\prime \prime}$, is positive.
I. $(-\infty,-4),(3, \infty)$
II. $(-\infty, 0),(2,3),(3,6)$
III. $(-4,3)$
IV. $(-4,0),(0,3)$
V. $(-\infty, \infty)$
4. Let $f(x, y)=x^{2}+x y e^{y}-e^{-y^{2}}$.

Find $\frac{d f}{d y}(x, y)$.
I. $2 x+x e^{y}-e^{-y^{2}}$
II. $x(y+1) e^{y}+2 y e^{-y^{2}}$
III. $x e^{y}+2 y e^{-y^{2}}$
IV. $x e^{y}-e^{-y^{2}}$
V. $x e^{y}+x y e^{y}-e^{-y^{2}}$
5. Let $v_{1}=(3-21), v_{2}=(-115)$ and $v_{3}=(11-1)$.

Does the set $A=\left\{v_{1}, v_{2}, v_{3}\right\}$ form a orthogonal basis in R^{3} ?
I. $\quad A$ is an orthogonal basis of R^{3}.
II. A is a basis of R^{3} but not an orthogonal set of vectors.
III. A is an orthogonal set of vectors but not a basis in R^{3}.
IV. A is not a basis of R^{3} and not an orthogonal set of vectors.
V. None of the above.
6. Let $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ a linear transformation. $A=\left[\begin{array}{ccc}3 & 0 & 1 \\ -1 & 3 & 8 \\ 1 & 0 & 1\end{array}\right]$

Find the eigenvalues of A
I. $\lambda_{1}=3, \quad \lambda_{2}=2+\sqrt{2}, \quad \lambda_{3}=2-\sqrt{2}$
II. $\lambda_{1}=-3, \quad \lambda_{2}=-2+\sqrt{2}, \quad \lambda_{3}=-2-\sqrt{2}$
III. $\quad \lambda_{1}=3, \quad \lambda_{2}=2+\sqrt{3}, \quad \lambda_{3}=2-\sqrt{3}$
IV. $\quad \lambda_{1}=3, \quad \lambda_{2}=3+\sqrt{2}, \quad \lambda_{3}=3-\sqrt{2}$
V. $\quad \lambda_{1}=-3, \quad \lambda_{2}=3+\sqrt{3}, \quad \lambda_{3}=3-\sqrt{3}$
7. Assume that unvaccinated people are 7 times more likely to get COVID-19 than vaccinated people and that 60% of people are vaccinated. Assume that there is a 1% chance that a random individual will get COVID-19 in October 2021.
a. Calculate the probability that a vaccinated individual gets COVID-19 in October.
I. $\quad \mathrm{I} 0.05 \%$
II. 0.1%
I. 0.2%
II. 0.3%
III. 0.5%

7b. (refer to first part of question 7)
Calculate the probability that an individual is vaccinated and gets COVID-19 in October.
I. 0.08%
II. 0.10%
III. 0.12\%
IV. 0.18\%
V. 0.30%

7c. (refer to first part of question 7)

Calculate the probability that an individual gets COVID-19 in October was vaccinated.
I. 0.6%
II. 0.10%
III. 0.12\%
IV. 0.14\%
V. 0.18\%
8. Assume the average weight of an adult male is 172 pounds with a standard deviation of 28 pounds. Assume that the weight of adult males is normally distributed. Find the probability that a randomly selected adult male weighs more than 200 pounds.
I. 0.32
II. 0.16
III. 0.08
IV. 0.05
V. 0.025

